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Abstract of the Thesis

Exploitability Assessment with TEASER1

by

Frederick Ulrich

Master of Science in Electrical and Computer Engineering

Northeastern University, May 2017

William Robertson, Advisor

Bugs are still plentiful in software. Furthermore, fixing bugs is difficult, so developing a
way to rank bugs based on their severity is essential to save developer time. As a result, security
researchers have realized the necessity of pairing their bug with a Proof of Concept (POC), or input
to a program demonstrating the ability to use a bug to exploit the application, to demonstrate the
relative severity of their bug compared with others. This process of modifying an input that causes
a crash such that the input exploits a program is called exploit development. For the purpose of this
thesis, we are only interested in POCs for memory corruption-based vulnerabilities.

Similar to fixing bugs, exploit development is a difficult problem. As such there has been
some research on automating the creation of POCs. Most automated exploit generation techniques
use a modified program verification approach, whereas others employ dynamic taint analysis for
exploit detection. While these results have been widely disseminated and successful, there is still
room for improvement. Both approaches rely on tracking attacker-controlled input which often
leads to either computationally difficult constraint solving problems or taint explosion. Given the
computational difficulty of exploit development, we advocate for a human-assisted approach. We
envision a workflow where a tool and human analyst could inform each other.

In this thesis, we approach exploit development as an iterative process for an analyst with
a semi-automated tool called Taint-based Exploitation ASsEssment from Root cause (TEASER).
Our tool takes a dynamic taint analysis-based approach to exploit development where the taint
source is the data associated with the memory corruption as opposed to the program input. We

1This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering
under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the
Assistant Secretary of Defense for Research and Engineering.
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develop a model for analyzing the effects of a memory corruption bug on a program. The Root
Cause Taint Model taints data that violates a program’s memory model (i.e. use-after-free, buffer
overflow) and detects usage of this tainted data at seven classes of locations called Exploit Sinks.
We implement our model within TEASER, a system designed for aiding security researchers in the
exploit development process. TEASER must be provided with a program and crashing input that
triggers a memory corruption bug. We use TEASER on a suite of 6 programs from the Google Fuzz
Test Corpora. Our results identify several locations in the programs that use tainted data from a
memory corruption, demonstrating TEASER’s potential for precisely characterizing possible effects
of - and thus the severity of - memory corruption vulnerabilities.
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Chapter 1

Introduction

Software applications are inundated with bugs. While these mistakes in code may seem

innocuous, they can often be misused in order to exploit a program (i.e., disclose sensitive infor-

mation, execute arbitrary code, gain administrator privileges). An exploit is an input that triggers

unauthorized behavior in an application, and bugs that enable this unauthorized behavior are ex-

ploitable. Despite the very real threat of exploitable bugs, many bugs can take an inordinate amount

of time to fix, and distinguishing between exploitable and non-exploitable bugs from a crash dump

or bug report is difficult.

Sometimes, bug reports will feature a Proof of Concept (POC), or input to a program

demonstrating the ability to use a bug to exploit the application. For example, a recent write-up

demonstrates a full JavaScript to root exploit leveraging a bug in the Chrome OS network manager

[3] [5]. Such a case demonstrates the severity of the bug, but in other cases, a developer is not as

certain [19] [13]. In these ambiguous situations, developers are forced to rate the security severity

as high because of the potential abuse of a memory corruption. In these cases we are interested in

exploitability measurements or a tool to aid in quickly creating a POC for a bug. This process of

creating an exploit from a crashing input is called exploit development, and for the purpose of this

thesis, we are only interested in developing POCs for memory corruption-based vulnerabilities.

1.1 A Motivating Example

We work out an example (see Figure 1.1) for a program that mismanages heap-allocated

memory. Although we assume a GNU C library (glibc) version of malloc and free, some of the

more general ideas of heap exploitation are still relevant to other allocators [22].
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CHAPTER 1. INTRODUCTION

#define USAGE "./motivating-example <input_program>\n"
void word_printer(long *data) {

printf("%lx", *data);
}

5
// data type definitions
typedef enum {

RAW_BYTES,
PRINTER

10 } obj_type ;

typedef struct printer {
long id;
void (*read_disclosure)(long *);

15 long *data_ptr;
obj_type type;

} printer;

typedef struct chunk {
20 char *pointer;

size_t size;
} chunk;

// global data whose address is assigned to data_ptr in struct printer
25 long global_data = 1;

long printer_counter = 0;
chunk chunk_list[100];

int main_loop(FILE *fp) {
30 char *line = NULL;

size_t linecap = 0;
ssize_t linelen;
while ((linelen = getline(&line, &linecap, fp)) > 0) {

// check that line is of size greater than 0
35 switch (line[0]) {

// create_printer_object -> id
// allocate a printer object and return it’s chunk id
// adds object pointer and size to chunk_list
case ’c’:

40 . . .
break;

// create_raw_byte_array len raw_bytes -> id
// allocate an arbitrary-length string of raw bytes chunk id
// adds object pointer and size to chunk_list

45 case ’b’:
. . .
break;

// release id
// free an object

50 // VULN: leads to a UAF because we can still access
// the chunk data with its id number
case ’r’:

. . .
break;

55 // print id
// print the data_ptr associated with the printer object
case ’p’:

. . .
break;

60 // move dst_id src_id
// copies the data from one malloc chunk to another
// VULN: leads to a heap buffer overflow
case ’m’:

. . .
65 break;

default:
continue;

}
}

70 return 0;
}

int main(int argc, char *argv[]) {
char *fname = argv[1];

75 FILE *fp = fopen(fname, "rb");

return main_loop(fp);
}

Figure 1.1: Motivating example for a program with different types of memory corruption bugs.
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CHAPTER 1. INTRODUCTION

The example above, Figure 1.1 (the full version is located in Appendix A), is an abridged

version for readability of a simple interpreter designed by the authors to have many exploit oppor-

tunities via different memory corruption bugs. Two in particular are a use-after-free bug and a heap

buffer overflow. Each bug requires different degrees of understanding data flow from the mem-

ory corruption to other program points. We were able to construct three proof of concept exploits

for Figure 1.1: (1) a remote code execution exploit through a use-after-free, (2) a remote code

execution exploit through a heap buffer overflow, and (3) an arbitrary read primitive. But in prin-

ciple, more could be constructed based off of heap metadata attacks. Each bug that we use for the

three exploits signals errors under common memory corruption detectors like Valgrind or Address

Sanitizer (ASan) [37] [41].

The interpreter has five commands that are chosen based off of the first character in an

input line. The first two commands allocate objects of different types. Once allocated, an object’s

pointer and its size are placed into a global array called chunk list. The first allocation com-

mand is ‘c’ (create printer object) which allocates an object with two fields: (1) a function

pointer to a function that prints the data pointed to by a long * and (2) the long * that we would

like to print. Second, ‘b’ (create raw byte array) allocates a string of raw bytes on the heap.

The rest of the commands take a chunk id as input which is used as an index into an array. First,

‘r’ (release) frees an allocated object according to its id. Second, ‘p’ (print) prints an object

according to its id. Last, ‘m’ (move) moves the data from one object to another without checking

for a possible buffer overflow. Comments starting with “VULN” signal a potential oversight in the

code.

One bug in this program is a dangling pointer in the print option on line 57 that can

be triggered with the following input: create printer object, release 0, print 0.

The use-after-free happens because pointers are still available to the user through the chunk list

container (defined on line 27) even after they have been released. Even though freed data is accessed,

the program will continue without a crash. A tool like ASan will report the dangling pointer use

and then abort. Instead, we seek a tool that alerts us of every point in a program trace that uses data

related to the dangling pointer usage, not as detectors of exploitation, but to use as hints for exploit

development.

3



CHAPTER 1. INTRODUCTION

1.2 Our Contribution

Figure 1.2 presents a typical timeline for the execution life of a buggy program. The time-

line features three main points: (1) the introduction of input to the program (which can encompass

many points in a program trace; for the purpose of this model, we will assume only one input point),

(2) a memory corruption, also known as a root cause, and (3) the program exit or crash. Between

(2) and (3) there are potential exploit sinks. We define an exploit sink (Ek) as an instruction that

operates on data involved in the memory corruption without causing an immediate crash. Existing

taint-based models for exploit detection may attempt to determine if certain exploit sinks are tainted

by attacker-controlled input [38]. However, many of these points can be benignly influenced by

attacker-controlled data, so such systems are imprecise. Additionally, an analyst may want to keep

track of more fine-grained detectors, such as reads of data tainted by the memory corruption. But

the false positive rate would likely be an obstacle if the taint source is the program input.

Attacker 
Controlled-Data 

Delivered (I) Root Cause (Es)
Program Exit

Or
Crash

Timeline of Program Execution

Heap metadata read (Ek)

Indirect jmp (Ek)

Function return (Ek)

Program execution

Figure 1.2: Timeline of a program featuring a root cause (a memory corruption) and potential exploit sink points (light-

ning bolts) after that.

Memory corruption-based exploits, in their most basic form, force certain instructions to

operate on data that violates the programmer’s intent or program’s runtime model. We are particu-

larly interested in what a program does with corrupted data and if such an analysis can inform the

exploit development process. Notably, we revise traditional exploit detection systems by defining

the taint source as the point of memory corruption rather than all attacker-controlled data.

We pose the question, “Given a program P and an input I that triggers a memory corrup-

tion bug, how can the program be exploited?” Our thesis is:

4



CHAPTER 1. INTRODUCTION

Given a memory corruption bug, tainting from the root cause of the bug provides a more precise

exploitability assessment than that of existing systems.

We make contributions to the study of software security in the following ways:

1. Formulating a workflow for iteratively developing exploits.

2. Applying a taint based model for understanding how various classes of memory corruptions

can affect a program.

3. Introducing more fine-grained detectors for exploitability measurement.

4. Developing a tool called TEASER that implements our model.

5. Employing TEASER on 6 memory corruption bugs from Google Fuzz Testing corpus in order

to illuminate the severity of each bug [10].

Figure 1.3 summarizes the TEASER workflow. A human analyst is required to synthesize

the knowledge from a debugger and open source memory corruption detectors. TEASER is an

iterative process, and when the analyst is finished she will have a collection of exploit sinks that will

serve as important targets during the exploit development process. After continued investigation

into the exploit sinks, the analyst can make a more effective ruling on the severity of the bug, or she

can modify the input I in order to achieve actual exploitation. The chief reason why the analyst can

sift through these detectors to make a judgment is because root cause tainting reduces the number

of false positives.

1.2.1 Road Map

Chapter Two will cover related solutions to speeding up or automating the POC develop-

ment process and measuring exploitability. In Chapter Three, we will cover the theoretical founda-

tions to understand our approach. These foundations will cover dynamic taint analysis, the subtlety

of memory corruption exploits on modern systems, and how tools like Valgrind and ASan aid in

diagnosing memory corruption bugs. Then, we will cover our taint-based approach to assessing

memory corruption bugs in Chapter Four. The results of our tool will be presented in Chapter Five.
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Application 
Debugger

Memory 
Instrumentation 
(e.g., Valgrind 

and ASAN)

TEASER Exploit Development Workflow

Tainted Malloc Reads, 
Tainted Function 

Arguments, Tainted 
Pointer Reads/Writes, 

Tainted Data Reads

Tainted Branching,Tainted 
Indirect Control Flow, 

Tainted Return Address

TEASER

Data-Related 
Detectors

Control Flow-Related 
Detectors

A B
C

Human Analyst

RCTPs

P, 
I

P, I, RCTPs 

Exploit Sinks

Synthesizes 
Program 
Knowledge

Iteratively 
Modifies I

Figure 1.3: TEASER is a system meant to complement existing tooling for exploit development, crash triaging, and bug

finding. TEASER, like exploit development, is an iterative process of aggregating potential exploit paths for a program

P on input I . At A, the analyst uses a debugger and/or one of various memory instrumentation framework to diagnose

the root cause of a memory corruption (e.g., use-after-free and buffer overflow). The goal of the analyst at A is to

determine where and when the memory corruption is triggered and what data is involved, or the RCTP (Root Cause Taint

Point). B introduces the TEASER system. Here, the analyst feeds TEASER the RCTP. Then, TEASER reruns P under

a dynamic analysis framework called PANDA [30]. Using the information from B, PANDA taints the data from the

memory corruption and registers detectors at certain program events like the reading of heap metadata and an indirect

control flow instruction. In C, TEASER reports to the analyst what sensitive program areas were tainted by the memory

corruption. From here, an analyst will either (1) repeat the process on either a new input Iimproved or (2) conclude that

the program is, indeed, exploitable.
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Chapter 2

Background and Related Work

We discuss background and related work to the field of exploitability measurement: root

cause analysis, crash triaging, and automated exploit generation.

2.1 Root Cause Analysis

A root cause is the origin of a bug. Usually, it is the first instance of a memory corruption

through either a buffer oveflow or accessing data in the heap through a stale pointer. Root cause

analysis starts with a program P , a crashing input I , and a crashing instruction C. The analysis

asks, what is the origin of the corrupted data used in C?

Miller et al. narrate a process for iteratively finding the root cause for a program crash

using program analysis tools [35]. They start with a crashing instruction on some invalid operand,

which is either a memory location, register, or constant. Their process requires a trace log, produced

from the BitBlaze framework. The trace log contains information about tainted data and allows an

analyst to do a backward slice, a list of instructions that were used to compute the operand in

question. The first instruction in the backward slice is the root cause. In ReTracer [28], the faulting

memory dereference is marked as tainted. Then a backwards taint analysis is performed to identify

the origin of the tainted value. The function that is the source of the corrupted value contains the

root cause.

Another area of root cause analysis is fine-grained memory instrumentation for the pur-

pose of catching memory violations early. Two notable works in this area are Valgrind [37] and

ASan [41]. The tools rely on maintaining a shadow memory that tracks if each byte in application

memory is safe to access. Through dynamic or static instrumentation, both tools pad every alloca-

7



CHAPTER 2. BACKGROUND AND RELATED WORK

tion on the heap. The padded region is marked as unsafe, and when allocated chunks are freed, they

are also marked as unsafe. Whenever the program tries to access memory at a virtual address, the

memory error detector looks up the virtual address in shadow memory. The tools report an error if

the shadow memory says that the virtual address is marked unsafe. With this method these tools can

detect heap buffer overflows, use-after-free bugs, and double frees.

While both use a dynamic analysis, Valgrind uses dynamic instrumentation whereas ASan

inserts instrumentation at compile time (static) which allows it to catch invalid memory accesses of

stack variables. Also, ASan implements a more efficient shadow memory encoding scheme [41].

On the other hand, Valgrind does not require the program to be recompiled.

With respect to exploit development, the value of knowing a crash’s root cause is in mak-

ing it easier to understand the space of inputs that trigger a bug. This alerts an attacker to how

much freedom they have in manipulating the input to generate the exploit. Even though root cause

analysis is not enough to diagnose exploitability, it is a prerequisite for TEASER.

2.2 Crash Triaging

Crash triage research centers around labeling the severity of a crash without any intent to

explain how the crash came about. Particularly, the dominant questions are over a set of crashes,

C, and a set of bugs, B related to such crashes: (1) what is the length of B, or in other words,

which crashes share the same root causes, and (2) for a given crash c ∈ C, what is its severity (i.e.,

exploitable, unexploitable, or unknown) [1] [4].

Microsoft’s !exploitable employs many heuristics for deciding the severity of a

crash [9] . For example, if the crash is a violation of Data Execution Prevention (DEP), then the

crash is labeled exploitable. On the other hand, !exploitable labels a stack exhaustion as not

exploitable.

A weakness of this approach is that a heap corruption is always considered exploitable.

Even though this is a safe assumption, not all heap corruptions are exploitable which means that this

rule can produce many false positives that misrepresent the severity of a crash. Furthermore, crash

triage tools do not provide insight on how to develop an exploit for a crash labeled as exploitable or

non-exploitable.

8
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2.3 Automated Exploit Generation

This research views exploit generation as a program verification problem where proper-

ties of security (i.e., pointers stay within the bounds of their allocated buffers) are replaced with

properties of exploitation. One such property is arbitrary control of a function pointer in memory or

return address on the stack such that it can contain a pointer to the attacker’s shellcode. Similarly,

another property describes a write-what-where primitive.

The automatic exploit generation problem involves designing an algorithm that takes a

crashing input I that triggers a exploitable property and a program P and returns a new input Iexploit.

Automatic exploit generation seeks to automate the generation of an exploit that satisfies the same

control path as I but with the extra constraint that the instruction pointer contains a reference to the

attacker’s shellcode or Return Oriented Programming (ROP) chain [23] [33].

There are a few variants, such as Automated Exploit Generation (AEG) [23], Automated

Patch Exploit Generation [25], and exploit hardening [40], which aims to create an exploit that

bypasses exploit protection mechanisms.

In recent years, automatic exploit generation has gained more popularity in academic

cyber security research due to the Cyber Grand Challenge, a Defense Advanced Research Projects

Agency (DARPA) sponsored program created to assess cyber reasoning systems [16]. The winning

system for the Cyber Grand Challenge, Mayem [26], employs the above research on automated

exploit generation for its exploit generation component.

Despite this success, the academic prototypes for symbolic execution frameworks em-

ployed by automated exploit generation systems are not usable on all real world programs, espe-

cially event-driven and C++ based applications [34]. Additionally, a weakness of automatic exploit

generation is that it does not suggest all the possible ways a program can be exploited. Last, current

automated exploit generation methods do not realistically model heap metadata or the heap layout

which are essential prerequisites for constructing reliable heap-based exploits [31].
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Chapter 3

Foundations

Here we discuss two areas that must be understood for the rest of this paper: (1) dynamic

taint analysis and (2) common memory corruption exploit techniques.

3.1 Dynamic Taint Analysis

A dynamic taint analysis allows one to precisely follow data that has been marked. When

data is marked, we say that it is tainted. Taint systems require (1) taint sources - a specification of

which input sources introduce taint into the program, (2) a model for propagating taint, and (3) taint

sinks - a specification of instructions that should not operate on the tainted data.

3.1.1 Taint Propagation

Algorithm 1 shows a simple algorithm for propagating taint over the course of an instruc-

tion trace. Given an instruction I with a destination operand Idst and source operands Isrcs, the

taintedness is the union across all Isrc ∈ Isrcs for the instruction as shown in Algorithm 1. A taint

source is introduced by a particular instruction type (i.e., read syscall or a specialized hypercall

that tells the taint manager to label n bytes starting at a particular address).

Algorithm 1 Simple algorithm for propagating taint throughout a system.
1: procedure SIMPLETAINTANALYSIS

2: for I ∈ InstructionTrace do

3: isTainted[Idst]←
⋃

Isrc∈Isrcs
isTainted[Isrc]

10
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However, Algorithm 1 does not track which bytes from the taint source influenced a

particular tainted value at a taint sink which is useful for more refined analyses. Also, the taint

system described above does not keep track of a notion of complexity for tainted value. For example,

if an array of tainted bytes from a taint source is used to compute a checksum, the resulting value

will surely be tainted. But since its value is the result of many operations on many different tainted

bytes, we might want a way to denote the value as a more complex function of the taint source or

derived from a set of bytes from the taint source than as simply tainted or not tainted. We use a

measurement from Dolan-Gavitt et. al called Taint Compute Number (TCN), which is the number

of arithmetic operations used to compute a tainted value [30]. We also assign each byte in a taint

source a unique taint label. We modify Algorithm 1 to track the TCN and the taint label set for

each register or memory cell, where the taint label set is the set of taint source labels that computed

the tainted value [29]. Given an instruction I with destination operand Idst and source operands

Isrcs, the taint label set is the set union across all Isrcs and the new TCN is the max TCN across all

Isrcs incremented by one. In this case, an address or register is tainted if the length of its taint label

set is greater than zero.

The resulting algorithm, shown in Algorithm 2, is also a more realistic taint system. Since

we would like to taint at the byte level, but assembly instructions usually execute at the word level

(usually four or eight bytes), it can be unclear how to propagate taint. For example, when doing a

bitwise or, if only the least significant byte of the source operand is tainted than the resulting taint

operation should only mark the least significant byte of the destination operand as tainted. While for

an instruction like a multiply, we aggregate, or mix, the taint label set and TCN information for each

byte in the source operands and then propagate those resulting values to each byte in the destination

operand. Algorithm 2 makes a distinction between instructions like a bitwise or and a multiply

with the notion of parallelComputeOp and mixedComputeOp, respectively [17].

Normally, for operations that dereference memory locations, the resulting dereference

is included as a source operand instead of the pointer. However, a taint system that propagates

taint through pointer dereferences, also called tainted pointer, will include the pointer in the source

operand list [17].

3.1.2 Exploit Detection (sinks)

In this section we will describe a taint policy meant to signal exploitation of an applica-

tion. The model below is borrowed from TaintCheck, a exploit detection tool built on the BitBlaze
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Algorithm 2 Algorithm for maintaining taint label sets and the taint compute number throughout

an execution trace
1: procedure COMPLEXTAINTANALYSIS

2: for I ∈ InstructionTrace do

3: if mixedComputeOp(I) then

4: mixedLabels← {}
5: maxTCN ← 0

6: for Isrc ∈ Isrcs do

7: for i from 0 to len(Isrc) do

8: mixedLabels← mixedLabels ∪ LabelSet[Isrc + i]

9: maxTCN ← max

[
maxTCN, TCN [Isrc + i]

]
10: for i from 0 to len(Idst) do

11: LabelSet[Idst + i]← mixedLabels

12: TCN [Idst + i]← 1 +maxTCN

13: else if parallelComputeOp(I) then

14: for i from 0 to len(Idst) do

15: LabelSet[Idst + i]←
⋃

Isrc∈Isrcs
LabelSet[Isrc + i]

16: TCN [Idst + i]← 1 + max
Isrc∈Isrcs

TCN [Isrc + i]

17: else if assignmentOp(I) then

18: for i from 0 to len(Idst) do

19: LabelSet[Idst + i]← LabelSet[Isrc + i]

20: TCN [Idst + i]← TCN [Isrc + i]
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framework [38]. The model presented below is not designed to guide the exploitation process and

we are not trying to show any fallacies in TaintCheck. However, we will use it as a straw-man

against our system in order to show how TEASER informs the exploit development process.

Taint-based exploit detection specifies certain sink instructions that must not operate on

tainted data. In this section, we define the taint sinks used for exploit detection. We used existing

literature to form these exploit detectors [38]. While the intent of these detectors was to detect an

exploit event, we will view these detectors as potential exploit points (see Section 4.2).

We describe exploit detection in two parts, control-related detectors and data-related de-

tectors. Primarily, instructions that influence control flow (i.e., ret, jmp [eax], call [eax])

have the most exploit potential. When the tainted operand has a TCN of 0, we know that the jump

or call target is a direct copy of the taint source. This is indicative of exploit potential.

A taint policy for control-related detectors is:

P1) A return instruction must not take a tainted value from the stack

P2) Indirect jmp and call instructions must not have tainted targets

And a taint policy for data-related detectors is:

P3) A pointer load and store must not be derived from a tainted pointer

P4) Arguments for system calls should not be tainted

P5) Arguments for function calls should not be tainted.

Notice that exploit detection does not have a detector for a read of tainted data. While

taint-based exploit detection, existing exploit detection frameworks that use program input as the

taint source would not use a tainted read as a detector because there are many benign cases for

reading tainted input [38]. However, any data from a memory corruption could violate the assump-

tions made by the programmer, so a more precise exploit development-focused taint system would

want to measure reads of tainted data. Section 5.2.5 demonstrates the value of a more fine-grained

detector in assessing information leakage exploits.

3.2 Exploit Techniques

The exploit development process involves a series of techniques that the hacker commu-

nity has curated over the years in order to use a bug or series of bugs to exploit a program. We will
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assume that the exploit development process begins with a crashing input, I , on a program P , where

C is the crashing instruction with bug type T . T is one of use-after-free, stack-based/heap-based

buffer overflow (also referred to as buffer overwrite), or stack-based/heap-based buffer overread. In

some cases P only crashes on I when it is run under an instrumented version of P that aborts on

fine-grained memory violations (i.e., accessing out of the bounds of a heap allocated object). The

first section discusses the classes of memory corruption bugs attackers use to construct memory

corruption-based exploits. The second section describes the desired end state of an exploit and how

our detectors inform that we have come closer to that end state.

3.2.1 Bug Types

We consider three general classes of memory corruption bugs: (1) use-after-free, (2)

buffer overflow, and (3) buffer overread. Although there are more types of memory corruption bugs,

we found these three a sizable portion of all memory corruption vulnerabilities and also represented

in our corpus (see Section 5.1). A more comprehensive report on bug types and memory safety can

be found at [42]. These three bug classes introduce memory corrupted-data to unexpected locations

in the program. For example, a use-after-free is a dereference of a pointer that points to memory

that has been reclaimed (and perhaps subsequently reallocated) by the heap allocator. On the other

hand, a heap buffer overflow allows an exploit source to alter heap metadata or the contents of an

another object on the heap. A buffer overread reads data outside of the bounds of a buffer. This data

could be application/runtime metadata or the contents of other data objects on the heap or stack.

However, the action of the buffer overread does not imply that the sensitive data will be leaked to

the attacker.

3.2.2 Exploit End States

Using a heap buffer overflow as an example here are four examples of turning a bug into an

exploit: (1) achieve an instruction pointer overwrite or pointer write control by corrupting a nearby

heap object, (2) gain a pointer write control by corrupting any heap metadata that the allocator uses

as pointers, (3) create a type confusion by corrupting heap metadata in order to trick the allocator

into returning a chunk that overlaps an existing chunk, or (4) achieve a read disclosure by triggering

control flow that leaks the memory corrupted data (see Section 3.2.3 for a nefarious use of a read

disclosure).
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Notice, that not all of these end states represent the terminal stage in exploit development,

i.e. remote code execution. Once it can be shown that an input triggers (2) or (3), more work must

be done to create a working exploit. The purpose of these end states is to connect a taint policy to

the stages of exploit development. Even though they are not an exhaustive list of all the ways to

exploit a bug, they are some of the most common ways. We chose them because, intuitively, we

should be able to measure these end states with a taint-based approach.

3.2.2.1 Instruction Pointer Overwrite

The most powerful exploit end state is the instruction pointer overwrite. In this case we

are able to overwrite a stored function pointer or a return address on the stack. Call the location of

the stored function pointer Locpc. With an Instruction Pointer Overwrite bug, we are interested in

the TCN of Locpc. If it has a low TCN at the point of an indirect control-flow detector this indicates

a higher chance of an arbitrary control. Ultimately, an attacker would like to create a modified input

Inew such that the same constraints π are satisfied, but Locpc contains an address that points to the

attacker’s shellcode.

The control-related taint policy (P1 and P2) in Section 3.1.2 detects this exploit end state.

If we detect tainted indirect control flow and the TCN of Locpc is greater than 0, then we could have

a false positive. For example, a program that uses attacker controlled-input as a offset into a jump

table will violate the tainted indirect control flow policy (P2). However, this case can be benign and

is a common idiom.

3.2.2.2 Pointer Write Control

Another powerful exploit end state is pointer write control also called a write-what-where

primitive. In this situation, our crashing instruction C dereferences a pointer, pointer, and then

writes some data D to the location pointed to by pointer. Exploit developers call this control over

pointer a write-what-where primitive. Turning a write-what-where primitive, which is fundamen-

tally a data-related attack, into a instruction pointer overwrite involves leveraging knowledge of a

program’s runtime environment and of application specific data structures. For example, on a Unix-

flavored program an attacker can use a write-what-where primitive to overwrite a function pointer

in the Global Offset Table (GOT) [36] [39].

We can measure this end state with a tainted pointer write policy (P3) from Section 3.1.2.

Furthermore, if pointer has a TCN of 0, then it is simply a direct copy of the bytes from the taint
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source, signaling that the memory corruption can give a write-what-where primitive.

3.2.2.3 Type Confusion

Type confusion is stage of exploit development that can give the attacker instruction

pointer overwrite or pointer write control. Typically type confusion occurs with two objects O1

and O2, of runtime types A and B, respectively, that are allocated on the heap. Our program cre-

ates and stores a PointerO1 and PointerO2 , which are the memory addresses returned from the

allocator.

We define type confusion as cases where Pointer01 is treated as a pointer to an object

(O2) of runtime type B where A 6= B and B is not a subtype of A. In this situation, a write to

O1 is actually corrupting O2, and the next access of O2 is undefined behavior. The most powerful

form of this situation is if O1 is some array of attacker-controlled binary data and O2 is an object

with a function pointer. From here, an attacker can find offsets into O2 that contain the ideal data

to corrupt (i.e., function pointer or writable pointer) to elevate the type confusion technique into an

instruction pointer overwrite or pointer write control respectively.

The exploit detection system described in Section 3.1.2 would have trouble measuring or

detecting the presence of type confusion. This is because none of the detectors can resolve pointer

ownership or aliasing. On the other hand, the control flow detectors and tainted pointer detector (P1

- P3) are still useful in the case where type confusion is used to construct a more powerful exploit

primitive.

3.2.3 Read Disclosure

A read or information disclosure is the “intentional or unintentional disclosure of informa-

tion to an actor that is not explicitly authorized to have access to that information” [8]. In particular,

we are interested in leveraging a memory corruption to leak sensitive data in memory. Heartbleed

is perhaps the most infamous information disclosure. The vulnerability gave attackers the ability to

read up to 64K in application memory, which included TLS private keys [15].

Our existing taint policy in Section 3.1.2 cannot measure this exploit end state. First, the

taint source is input already available to the attacker. So tracking its data flow to assess if it is leaked

is moot. Second, the existing detectors are not general enough to measure tainted data flow to an

I/O sink.

16



Chapter 4

Methodology

In order to apply dynamic taint analysis to our problem we must answer three questions:

1. What data should be labeled as tainted?

2. How is taint propagated during a program’s execution?

3. When and where do we query taint?

The first requirement is satisfied by what we call an Exploitation Source, Es, which is the memory

violation that is controllable by the attacker. We handle the second question with a generic taint

system explained in 3.1.2. The third question is settled by our notion of Exploit Sinks, Ek, or points

in the program that should not operate on data from a memory corruption.

4.1 Exploit Sources

We have devised a general framework for applying taint labels to data involved in a mem-

ory corruption. Specifically, we are interested in applying taint labels to data that violates the pro-

gram’s runtime model or assumptions made by the programmer. These taint labels represent each

byte in the Exploitation Source, Es. In some cases, an attacker is given a primitive that allows her to

control memory at some relative offset from a program data structure. Other times, an attacker can

cause the use of a dangling pointer. Or an attacker can influence one of the arguments in a function

call like memcpy to cause a buffer overflow on either the stack or the heap. In all these cases, a bug

is associated with n bytes in memory that violate the assumptions made by the program’s runtime

model or the application invariants. We denote the specification of where/when anEs happens in the
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program and the address of the memory corrupted data as the Root Cause Taint Point (RCTP). The

information from a fine-grained memory checker, like ASan and Valgrind, and the GNU Debugger

guides the user to use program knowledge to identify RCTPs.

Specifically, a RCTP is all the information needed to label the Es as tainted during a pro-

gram trace. Therefore, we define RCTP as a four-tuple:

RCTP = (Where,When,Buf,BufSize)

where When represents the number of times the Where must be reached during the program trace

before the taint system labels Buf to accommodate loops. For the purpose of our system we use

the program counter to represent Where, but in principle another convention could be used (i.e., a

hash of the program counter and the callstack).

The end goal of our root cause detection and labeling strategy steps explained below

in Section 4.1.1 and Section 4.1.2 is to determine the RCTP. We encode the RCTP in the source

code as a call to the function vm taint exploitation label(char *Buf, ssize t

BufSize, unsigned When) which communicates to PANDA which bytes to label as tainted.

4.1.1 Root Cause Detection

We use existing tooling to find the location of the root cause of a memory corruption bug.

This process entails finding the where and when components of a RCTP. The tools (Valgrind and

ASan) run a program P under fine-grained memory instrumentation in order to find any instance

of an out-of-bounds memory read/write or a use-after-free. Then in a debugger we explore what

variable the program is trying to access.

We refer to our example, Figure 1.1, from Section 1.2. We assume that we are given a

crashing input resembling Figure 4.1.

p
2 c
r 0

4 p 0
c

Figure 4.1: Crashing input for our motivating example. Such an input could have easily have been generated from a

fuzzer. The input allocates a print object, frees it, and then uses a dangling pointer to try to print the object. Valgrind and

ASan report the memory violation, but the program runs without error when it is not instrumented.
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But when we run the program there is no crash. Running it under Valgrind reveals that

there is an invalid read in the print case of our interpreter. Upon further analysis, we learn that we

are looking at a use of a dangling pointer. Even though the print object had been freed on line 3, the

program still uses a function pointer in this object during the print command on line 4. The program

does not crash because the object remains mostly intact after the free.

4.1.2 Labeling Strategy

Even though a root cause detection tool gave us the location of an Es, we still need to

determine what bytes we label. The goal of our labeling strategy is to identify the what component

of a RCTP for a particular bug. In this case, it is useful to determine what type of bug we triggered

and apply a labeling strategy based on that bug type. The bug type is informed by a combination

of the root cause detection step in Section 4.1.1 and manual analysis. In the case of our example,

Figure 1.1 on input Figure 4.1, our root cause detection tool tells us that the bug type is a use-

after-free. However, in other cases, we would want to distinguish between a pointer-based buffer

overflow (Section 4.1.2.2) and a n-byte buffer overflow (Section 4.1.2.3). Determining what to label

for a bug still requires human judgment, and the strategies presented in the next three subsections

can be thought of as guidelines.

4.1.2.1 Use-After-Free Tainting

free(p);

p

Use-After-Free

Figure 4.2: Root cause taint model for a dangling pointer. In this example, after the code free(p) is executed, we label

its malloc chunk as tainted. The gray region represents the memory that is tainted after call to free.

Figure 4.2 demonstrates the root cause taint model for use-after-free bugs. In this situa-

tion, Valgrind and ASan emit an error during program execution signaling a use of a pointer after

its corresponding malloc chunk has been freed.
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In this situation we label the recently freed chunk as tainted. Although it is not clear that

we are going to have the ability to freely control what is in that chunk, the idea is that an attacker

with an intervening call to malloc could place arbitrary data in that free chunk.

1 . . .
case ’r’:

3 . . . // parse arguments for release command
free(mem_chunk_list[id].pointer);

5 vm_taint_exploiation_label(mem_chunk_list[id].pointer,
mem_chunk_list[id].size,

7 /* When */ 0);
. . .

Figure 4.3: Our instrumentation for our use-after-free root cause in the motivating example.

Figure 4.3 shows the source code instrumentation to label the recently freed chunk as

tainted. Notice that theWhere argument to vm taint exploitation label is 0. This means

that we taint the root cause on the first time we reach the instrumentation function.

4.1.2.2 Pointer Arithmetic-based Buffer Overflow Tainting

We develop a way to model what bytes to taint after a pointer arithmetic-related error.

Although pointer arithmetic-based buffer overflows can manifest in many different ways, we focus

on two common cases: an out-of-range pointer offset and out-of-bounds pointer increment. In the

first case, we index from a pointer using an untrusted value that causes a program to access memory

past the bounds allocated for the pointer. In the second case, we increment a pointer too many times

such that it points past the bounds of a buffer.

Figure 4.4 represents a root cause tainting decision for our two cases of pointer arithmetic-

based memory corruptions. On the left the attacker possesses the ability to write data at an arbitrary

offset from some location in memory. In our Root Cause Taint Model, we simply taint the bytes at

dst + foo after the write happens.

For the example on the right in Figure 4.4, dst points outside of the bounds of a buffer

after the conditional expression is executed. This data could be valid in the context of other parts of

the program. For example, perhaps the data being accessed in the out-of-bounds read is part of an

adjacent heap object. We would not want to taint this data because there could potentially be valid

accesses of that data. Our solution, depicted on the right side of the figure, is to taint the pointer,

dst, and enable tainted pointer such that everything dereferenced from dst is tainted. However,

data out of the bounds of the buffer will only be marked as tainted if it is accessed through the tainted
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*(dst + foo) = bar;

dst

end dst
boundary

dst + foo

if (*dst++ == ‘>’) {
...

}

End dst boundary
dst

Out-of-Range Pointer Offset

Unauthorized 
read

Out-of-Bounds Pointer Increment

Figure 4.4: Root cause tainting for two pointer arithmetic-related cases. The left, “Relative Buffer Overwrite“, represents

a write-what-relative-where condition in which the attacker has semi-control over dst through the variable foo. The

right example is an out-of-bounds read. For the right case, after the conditional expression is executed, the pointer begins

to point out of the bounds of an allocated buffer. We mark the pointer as tainted instead of the data it points to. The gray

regions represents the bytes we label as tainted after the line of code is executed. And the red region represents bytes of

the unauthorized read.

pointer. The assumption for this labeling solution is that once a pointer points past the bounds of a

buffer it is uncommon for the pointer to be corrected to point back within the bounds of the buffer.

4.1.2.3 N-byte Buffer Overflow Tainting

The last category of root cause taint labeling, Figure 4.5, shows how we label buffer n-

byte overreads and overwrites as tainted. Note that we use the function memcpy in these examples,

but in principle, we could use any function that causes an n-byte overflow.

Figure 4.6 represents the difference in instrumentation for an n-byte overread versus

overwrite. In both cases we label the bytes in the dst buffer. Consider the alternative of labeling

the bytes that were accessed outside of the src buffer before the call to memcpy.

However, those bytes could be part of another chunk on the heap. Any valid use of data

from that chunk would be falsely marked as tainted. We believe our taint model is superior because

it only taints the bytes outside of the bounds of the src buffer when they are copied over to the

dst buffer.
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// len(dst) < num_bytes
memcpy(dst, src, num_bytes);

End dst boundary

dst src

// len(src) < num_bytes
memcpy(dst, src, num_bytes);

End src 
boundary

dst src

End dst boundary

N-Byte Buffer Overread N-Byte Buffer Overwrite

Unauthorized 
read

Figure 4.5: The left example shows an unauthorized read of n bytes past the src buffer. The right example shows a

usage of memcpy where the destination buffer is overflowed. Again, the gray region represents the bytes we taint after

the line of code, whereas the red regions represents the bytes of the unauthorized read.

. . .
2 // labeling buffer overread
taint_label(dst + len(src),

4 num_bytes - len(src),
/* When */ 0);

6

8 // labeling buffer overwrite
taint_label(dst + len(dst),

10 num_bytes - len(dst),
/* When */ 0);

12 . . .

Figure 4.6: Our instrumentation for buffer overread and overwrites using the source code from Figure 4.5 as an example.
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4.2 Exploit Sinks

An Exploitation Sink, Ek, is a program point that operates on sensitive data controlled

by Es. This can be one of many different kinds of desirable exploitation events, such as the use

of a return address or function pointer found to be controlled by an Es. The proposed exploitation

detectors D are heavily influenced by the taint policy (P1 - P5) described in Section 3.1.2, our

section on exploit detection.

D1) tainted return address - Is the return address on the stack tainted when a function executes

the ret instruction? (P1)

D2) tainted indirect control flow - Does tainted data influence an indirect call or indirect jmp

instruction? (P2)

D3) tainted branch - Are flags used in a branching instruction tainted?

D4) tainted heap metadata read - Is data read by the allocator tainted?

D5) tainted function argument - Are any function arguments on the stack tainted? (P5)

D6) tainted pointer read/write - Is a pointer that is used to read or write data tainted? (P3)

D7) tainted read - Is the data from a virtual memory read tainted?

Given the trigger of a detector Di ∈ D at a program counter PC, we can declare an

Exploitation Sink as a three-tuple:

Ek = (Where,When,Di)

where Where represents the program counter at the detector and When represents the same value

as When in Section 4.1. Given this model, we observe how the program interacts with memory

corrupted data that clearly violates programmer assumptions.

4.3 TEASER

TEASER uses the following open source software: PANDA, Valgrind, ASan, and LLVM.

The system is user driven, meaning each step requires the user to interpret the output from the

previous component and transform it in an intelligent way for the next step. The system architecture
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Figure 4.7: TEASER architecture

is described in Figure 4.7. TEASER is executed in two phases that are driven by an analyst. The

goal of Phase One is to calculate the Root Cause Taint Point for the program input. The goal of

Phase Two is to measure the impact or exploitability of the root cause by monitoring our seven

detectors outlined in Section 4.2. After Phase Two the analyst chooses to either refine the input in

order to increase the number of detectors reached from a root cause or conclude whether or not the

program is exploitable.

4.3.1 Phase 1: Root Cause Taint Modeling with Valgrind/ASan

We use two open source dynamic analysis tools, Valgrind and ASan, for detecting the

root cause of a memory violation. Section 2.1 on root cause analysis explains how these tools work.

Compared with other tools in the root cause field, we use these tools because they are popular in the

community and reliable. Also, when run on programs with debug information enabled, these tools

will provide line and filename in the source code associated with the memory corruption. Having

source code level information makes it easier to diagnose the root cause.

We found that both tools complemented each other for TEASER. We were able to run

Valgrind on the actual binaries that we ran on the PANDA guest machine. We used this feature to

confirm that the bug existed in the code. On the other hand, ASan was useful because it gave more
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detailed information about the root cause such as a hex dump of memory surrounding the memory

violation. Since none of our bugs in our corpus were stack-based buffer overflows, Valgrind and

ASan were consistent in the errors they reported. However, in principle, having ASan is useful

because it reports memory violations for stack-based variables.

When we get a filename and line number tied to a heap-related error, a human analyst

manually instruments the source code with a hypercall that instructs the taint system to label the

newly corrupted data as tainted. These tools report the presence of errors like a heap buffer overread,

heap buffer overwrite, or use-after-free. These bugs are further explored and diagnosed with a

debugger. We used the GNU Debugger (GDB) [11] for our evaluation, but in principle any debugger

can be used.

4.3.2 Phase 2: Taint Propagation and Exploit Sinks with PANDA

PANDA is an architecture neutral dynamic analysis system built on top of the QEMU

emulator [30]. PANDA introduces record replay and a plugin architecture to QEMU.

Primarily, we use PANDA as a whole system, architectural neutral taint system with the

ability to add callbacks at certain points during a program trace. The taint system is loosely based off

of the one in PIRATE, from Wheelan et al. [43]. PANDA introduces a plugin for lifting Tiny Code

Generator (TCG), QEMU’s emulation Intermediary Language, to LLVM instructions. This plugin

uses the TCG to LLVM lifter in S2E, a project for analyzing software using selective symbolic exe-

cution [27]. We rely on a set of hooks for a subset of LLVM instructions in order to perform certain

taint operations such as taint labeling, taint propagation, and taint querying [24] [43]. Furthermore,

the PANDA taint system has the ability to propagate taint through dereferences of tainted pointers.

We call this feature tainted pointer mode. Tainted pointer mode is turned off by default except for

the case where we taint a corrupted pointer as our root cause (see Section 5.2.3).

For this project, we have developed two PANDA plugins to facilitate labeling tainted

data at an Es and querying the taint status of an operand at an Ek. Primarily we use Debugging

With Attributed Record Formats (DWARF) information, the debugging file format for Executable

and Linkable Format (ELF) binaries, to determine the virtual address of the malloc and free

functions. We trace calls to malloc and free to figure out when the allocator is executed. We

query the taint status of all bytes read, using PANDA’s facilities for hooking virtual memory reads

and writes, and also specify if the read is of heap metadata (D4 and D7 from Section 4.2). We

know this if we are in the allocator when the read happens.
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In PANDA we can also hook every call and ret instruction. At the call points we

check for tainted function arguments (D5) assuming the C calling convention cdecl, and at ret

points we check for the taintedness of the return address on the stack (D1).

Last, our LLVM instrumentation provides callbacks on instructions involving branching

(D3), indirect control flow (D2), and pointer dereferences (D6). We use these to query taint on the

related operands.

4.3.3 User Component - Exploit Refinement

The result of Phase Two is a list of exploit sinks that are derived from data in a memory

corruption. The exploit sinks contain the location in the source code in which they occur. They

also contain the TCN of the tainted bytes used. After Phase Two, the analyst attempts to use this

information to make the input more exploitable or rule that that bug is exploitable or not exploitable.

The goal of the refinement process is to (1) assess the amount of control the exploit source has over

the program and then (2) modify the input to gain more control.

An analyst may refine the exploit by attempting to answer the following questions:

1. If we have a use-after-free, what data is accessed through the dangling pointer?

2. If we have a buffer overflow, are we able to control what chunk we are overreading or over-

writing?

3. Similarly if we have a buffer overflow, can we change the number of bytes written to or read

from past the bounds of the buffer?

4. How does corrupted heap metadata shape the behavior of the allocator?

Notice that these questions can be framed in terms of our detectors in Section 4.2. Ques-

tions one and two can be answered by observing which detectors (excluding D4) the exploit source

triggers. The last item is measured by our tainted heap metadata detector, D4.

Sometimes we are testing the exploitability of an API provided by a library, rather than

a standalone application. In these cases we run the API in a harness that loads input from a file

and then provides it to a target function that implements select functions from the API. With this

setup, we can manipulate the heap before and after the target function in order to ensure certain

heap chunks get corrupted by a heap buffer overflow or use-after-free.
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By changing the input or the heap layout before the target, the analyst can better assess

exploitability. This process is iterative, and the analyst is done when they have reasonable evidence

about the exploitability of a program.

4.4 Implementation

Our system runs on x64 Ubuntu 16.04, and we analyze programs that have been com-

piled for an i386-based Debian Wheezy machine. The reason for the architecture disparity is that

PANDA must run on a 64-bit system but it only has operating system introspection support for

32-bit systems.
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Results

We ran TEASER on six open source programs: BoringSSL, OpenSSL, SQLite, Web Open

Font Format (WOFF2), libxml2 and c-ares. We compare the results of our system with a modified

version of our tool that uses the input (instead of the root cause) as the taint source. The results

demonstrate that root cause tainting gives a more precise picture of the possible exploit paths for a

bug. We also provide case studies for how TEASER and our proposed exploit development workflow

can be employed in a real-life situation.

5.1 Experimental

We obtained six programs from the Google Fuzz Testing corpus [10]. The corpus is

meant to used as a benchmark for fuzzers. The corpus consists of 13 open source libraries with

expected outputs from a fuzzer that trigger either a memory corruption, information leak, or an

out-of-memory error in each library. We trimmed the test corpus to 6 programs that had a memory

corruption bug and could be triggered on 32-bit architectures. This is because PANDA, our dynamic

analysis framework of choice, does not have operating system introspection support for 64-bit Linux

systems.

5.2 Buggy Programs

Two of the six programs (c-ares and OpenSSL) have known exploits while the others

were marked as CVEs but do not have publicly released exploits. We saw this as an advantage of

our dataset because we had to confirm that either a bug was exploitable or not exploitable. For the
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exploitable programs, we also ask if the bug yields multiple paths to exploitation. On the other hand

if a bug is not known to be exploitable we seek to show that no control flow (detectors D1 - D3) is

derived from the memory corruption. It is especially important to show that a bug is not exploitable

because that is the more common and ambiguous task for an analyst.

5.2.1 Results Overview

Table 5.1 and Table 5.2 summarize the results of our experiments on our corpus of 6

programs. Table 5.1 describes the difference between the information gleaned from root cause

detection tools, TEASER, and the information security community. We looked at bug disclosures

and released proof of concept exploits (if available) for each bug in order to gauge the community

reaction. In all, this table shows that TEASER confirms that the exploit sources for all of the bugs do

not influence any of the control flow detectors (D1 - D3). However, many of the bugs induce reads

of tainted data (D7) and the c-ares bug causes a read of invalid heap metadata (D4) which indicates

exploitability.

Program Valgrind/ASan TEASER Community
BoringSSL Identify Use After Free (UAF)

at asn1 lib.c:459 in the
ASN1 STRING free function

Confirms that no control flow decisions
are made based off the freed data.

Bug report shows that bug possibly
only affects WebCrypto in Chrome.
Marked high severity, but no known ex-
ploit. [14]

Libxml Identify 1 byte heap buffer overread
at parser.c:10666 and various
uninitialized reads.

Confirms that no control flow decisions
are made off of data from buffer over-
read.

Ruled as memory leak, and low impact.

C-ares Identify 1 byte heap overflow in
ares create query.c:196

Identifies instructions in allocator that
use tainted data (useful in identifying
how a heap metadata overwrite influ-
ence program execution).

Known POC that leverages one byte
overflow to change heap header infor-
mation in order to gain root on Chrome
OS [5]

OpenSSL
(Heartbleed)

Identify Heap buffer overread at
ssl/t1 lib.c:2586

Identifies read disclosure sinks, con-
firms that there are no indirect control
flow decisions made based off of data
from read disclosure.

Created an exploit that leaks 64k of
memory including private keys

Sqlite3 Identify UAF at
sqlite3.c:127739 in
exprAnalyze.

Confirms that data in UAF does not in-
fluence control flow.

Security severity high, but no known
exploit [19]

Woff2 Identify a buffer overwrite at
woff2 dec.cc:500 in the function
ReconstructGlyf.

Checksum function returns tainted
value. Tainted data access in glibc mal-
loc function.

Marked as severe on Chromium, but no
known exploit

Table 5.1: Summary of results of TEASER compared with other tools and the “community”

For five of the six programs in the dataset, we saw that labeling from the root cause rather

than the program input generated fewer exploit sinks (see Table 5.2). And in the case of c-ares

and SQLite, an input-based taint source would not have caught any of the same exploit sinks as a

root cause-based taint source. This demonstrates that root cause-based tainting also provides better

information than input-based tainting.
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Program Number of Ess
file input (bytes
labeled)

Number of Ess
root cause (bytes
labeled)

Number of unique
Eks for file input

Number of unique
Eks for root cause

Number of Eks in
common

Instructions

BoringSSL 41 16 952 7 5 722
Libxml 60 4 76 43 4 24
C-ares 48 1 24 2 0 68
OpenSSL 41 46,790 22 28 4 42967
Sqlite3 88 776 335 5 0 2051
Woff2 61,644 10 4,430 26 13 276

Table 5.2: Comparison of exploit sinks collected with the taint source as the program input versus the taint source as the

root cause. The column labeled “Instructions“ represents the number of instructions between the root cause and the first

exploit sink.

5.2.2 BoringSSL

BoringSSL is a fork of OpenSSL developed by Google. It is intended to be shipped with

the Google Chrome/Chromium browsers and a number of other applications [2].

The fuzzing target calls the function EVP PKEY *d2i AutoPrivateKey(EVP PKEY

**a, const unsigned char **pp, long length) which takes in a string of bytes

and returns a decoded key using one of various key encoding formats. Valgrind reports a use of

four bytes of freed data in ASN1 STRING free at asn1 lib.c:459 (see Figure 5.1). It also

tells us the address of the data being accessed.

In GDB we set a break point on this function and track the argument a knowing that a

points to a 16 byte chunk. With each call to ASN1 STRING freewe check if a points to the chunk

where the dangling pointer was used. Through our analysis, we find that it is the fifth function call

that releases the target chunk. Therefore, our Root Cause Taint Point is 16 bytes at the variable a

on the fifth return from ASN1 STRING free.

454

void ASN1_STRING_free(ASN1_STRING *a)
456 {

if (a == NULL)
458 return;

if (a->data && !(a->flags & ASN1_STRING_FLAG_NDEF))
460 OPENSSL_free(a->data);

OPENSSL_free(a);
462 }

Figure 5.1: Root Cause Taint Point at the fifth exit of ASN1 STRING free

We feed the Root Cause Taint Point, the program, and the crashing input to TEASER. Our

system, in this case, reports less information than Valgrind and ASan. While all tools agree that

there is an invalid use of data on line asn1 lib.c:459 (D7), Valgrind and ASan also report a

double free on line 461. TEASER also reports usage of malloc metadata (D4), but closer analysis
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reveals that this is because the allocator replaces the first two words in a malloc chunk with two

pointers to other freed chunks. Therefore, usage of this data within the allocator is valid in the

context of the program. For more information on the free list, refer to the data definition of a malloc

chunk in the glibc malloc internals [22].

TEASER is still valuable here because it reveals that there is only one place where the

dangling data is used, and the attacker’s best route of exploitation is using an intervening allocation

to corrupt a such that a->data contains an arbitrary pointer to stage an arbitrary pointer read or

write. We were able to draw this conclusion by manually examining only seven locations in the

source code instead of 952 (see Table 5.2).

5.2.3 Libxml

Libxml, also called libxml2, is a parser for the metalanguage XML, a popular language for

designing markup languages. The library is extremely portable and is embedded in a wide variety

of applications including web browsers [21].

10644 . . .
// from include/libxml/parserInternals.h

10646 #define MOVETO_ENDTAG(p) \
while ((*p) && (*(p) != ’>’)) (p)++

10648

// parser.c
10650 . . .

#define RAW (*ctxt->input->cur)
10652 . . .

void
10654 xmlParseXMLDecl(xmlParserCtxtPtr ctxt) {

10656 . . .

10658 if ((RAW == ’?’) && (NXT(1) == ’>’)) {
SKIP(2);

10660 } else if (RAW == ’>’) {
/* Deprecated old WD ... */

10662 xmlFatalErr(ctxt, XML_ERR_XMLDECL_NOT_FINISHED, NULL);
NEXT;

10664 } else {
xmlFatalErr(ctxt, XML_ERR_XMLDECL_NOT_FINISHED, NULL);

10666 MOVETO_ENDTAG(CUR_PTR);
vm_taint_exploitation_label(&CUR_PTR, sizeof(CUR_PTR), 0);

10668 NEXT;
}

10670 }

Figure 5.2: Root Cause Taint Point on line 10667 of parser.c right after MOVE TO ENDTAG

The crashing input for libxml triggers several memory violations labeled as “uninitialized
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reads” under Valgrind. Despite these designations, the bug is really a heap buffer overread that

is labeled as having low severity. The overread results from parsing an XML document with an

unfinished XML declaration [7].

Figure 5.2 shows the code that triggers the uninitialized reads in libxml. The function

xmlParseXMLDecl parses an XML declaration header. Line 10658 shows the conditions for a

valid parse of the XML declaration header. If, the parse fails, and RAW (the byte that CUR PTR

points to) does not equal an XML closing tag (’>’), the execution will fall through to the else

clause on line 10664. Line 10666 in parser.c in the xmlParseXMLDecl function is the line

of code that triggers the overread. MOVETO ENDTAG is a macro that advances CUR PTR until it

reaches a closing tag. From this macro definition at the top of Figure 5.2, it is clear that p will be

incremented potentially past the bounds of the buffer if there is no closing tag.

The libxml case study allows us to demonstrate an alternative labeling strategy defined by

our root cause taint model (see 4.1.2.2). Since CUR PTR, or ctxt->input->cur, does not point

into a valid memory heap chunk after the macro on line parser.c:10666 is executed and the

pointer is used later on in the program, we say that this is a pointer arithmetic-related error. Since

it is unlikely that the pointer will be decremented, we can assume any dereference of this pointer is

invalid data (either uninitialized or from an adjacent heap chunk). Given the strategy in 4.1.2.2, we

instead label the location where CUR PTR is stored rather than the data it points to during the heap

read.

The results of our root cause labeling strategy show that there are 43 unique exploit sinks

compared to 76 (see Table 5.2) when the program input is the taint source. After investigating the

exploit sinks (non unique exploit sinks), we find that 631 are tainted reads (D7), 240 are tainted

pointer reads (D6), and 50 are tainted function arguments (D6). Most of the tainted reads appeared

to be from accessing CUR PTR. Since there were no control flow-related detections we are able to

rule out any ability to use this bug for remote code execution. However, the copious amount of

operations on CUR PTR, when it clearly points out of the bounds of a buffer, signals high potential

for a read disclosure.

5.2.4 C-ares

C-ares is a library for asynchronous domain name resolution and is used in many appli-

cations including, notably, shill, the Chrome OS network manager that was exploited in order to

gain root on Chrome OS systems [5].
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The bug that Valgrind and ASan detect is a one byte overflow in the ares create query

function which is used to compose DNS queries. The bug, shown in Figure 5.3, results from a vi-

olation of the parser routine which takes names as period-separated labels where the periods can be

escaped with a backslash. In lines 9 to 17, the parser calculates the number of bytes needed for the

resulting DNS query, making sure to count escaped characters as one instead of two bytes. In lines

19 to 20, the program is supposed to allocate an extra byte for the last character if the last character

is not a period. However, it does not account for the case where the last character is an escaped

period. Because of this the parsing routine allocates one fewer byte of space for the resulting DNS

query string, leading to a one byte overflow. In lines 29 to 43, the parser copies data from name to

buf using p and q as aliased pointers.

The root cause taint model for a buffer overwrite is intuitive. After the buffer overflow, we

taint the bytes that were illegally written past the bounds of the buffer. In the case of c-ares, that

buffer overflow occurs after line 196 in ares create query.c (line 47 in Figure 5.3). Line 49

in Figure 5.3 reveals the instrumentation code to label the one byte overflow as tainted.

The first time TEASER was used, no detectors were triggered, which meant that even

though there was a memory corruption, the data involved was never accessed again. Manual analysis

revealed that since the size of the DNS query in the crashing input was less than 80 bytes, the

allocated chunk fell inside of the allocator’s fastbin when freed. Malloc chunks within the fastbin are

padded to align on an 8 byte boundary [22] [32]. We needed to change the heap layout before/after

the call to ares create query and the input in order to trigger our various exploit detectors.

The exploit refinement process involved two parts:

1. We decided to allocate chunks before the c-ares target and then free those chunks after the

c-ares target.

2. We edited the crashing input such that chunks of a specific size that required no padding were

allocated. It turns out that this size was 60 for this crashing input.

Once we made these two changes, two detectors for the same instruction were triggered (tainted

malloc metadata read, D4, and a tainted branch instruction, D3). These detectors occurred only 68

and 80 instructions after the corruption which demonstrates that there is very little activity within

c-ares to take advantage of after the heap corruption. This idea is in line with the explanation

of the c-ares exploit which requires considerable heap manipulation in preparation for the one byte

overflow [5].
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1

int ares_create_query(const char *name, int dnsclass, int type,
3 unsigned short id, int rd, unsigned char **buf,

int *buflen, int max_udp_size)
5 {

int len;
7 unsigned char *q;

const char *p;
9

// compute length of destination buffer
11 len = 1;

for (p = name; *p; p++)
13 {

if (*p == ’\\’ && *(p + 1) != 0)
15 p++;

len++;
17 }

// VULN
19 if (*name && *(p - 1) != ’.’)

len++;
21

// allocate space for *buf variable
23 q = *buf;

25 // Set up the header and advance q past header
. . .

27 // for each label, we count the data
// and then copy the length_byte + data into the new buffer, q

29 while (*name)
{

31 // calculate len, or number of bytes, of label

33 *q++ = (unsigned char) len;
for (p = name; *p && *p != ’.’; p++)

35 {
if (*p == ’\\’ && *(p + 1) != 0)

37 p++;
*q++ = *p;

39 }

41 if (!*p)
break;

43 name = p + 1;
}

45 /* Finish off the question with the type and class. */
DNS_QUESTION_SET_TYPE(q, type);

47 DNS_QUESTION_SET_CLASS(q, dnsclass);
// root cause taint labeling

49 vm_taint_exploitation_label(q, 1, 0);
. . .

51 }

Figure 5.3: Root Cause Taint Point in for ares create query in ares create query.c

We found two exploit sinks when we tainted from the root cause and upon further in-

vestigation, these exploit sinks demonstrated the ability to reliably corrupt heap metadata. On the

contrary, tainting from the program input revealed 24 exploit sinks, but these were all benign reads
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of the program input in the parsing routine (see Table 5.2). The c-ares buffer overwrite clearly

shows the benefit of our approach. Tainting from the root cause highlights to the analyst what influ-

ence the one byte overflow has on the program. When a memory corruption does not explicitly use

bytes from the input, tainting from the program input is not as informative as tainting from the root

cause.

5.2.5 OpenSSL

The crash for this program is tied to CVE-2014-0160, also known as Heartbleed, which

allows an attacker with a specially crafted packet to illegally read up to 64k of an application’s

memory. The bug is a heap buffer overread and generally not exploitable as remote code execution

but rather as an unauthorized disclosure of sensitive information such as TLS private keys [15, 6].

Line 10 in Figure 5.4 shows the allocation of memory for bp. The size payload is extracted

from the pl packet, but this size is not checked to make sure that it is consistent with the actual size

allocated for pl on the heap. Line 16 is the location of the buffer overread. Here, payload number

of bytes are copied from pl into bp. Line 18 to 19 are the instrumentation code to label the bytes

that are illegally read into the variable bp (see 4.1.2.3 for a description of buffer overread/overwrite

tainting).

1 int
tls1_process_heartbeat(SSL *s)

3 {

5 . . .
/* Allocate memory for the response, size is 1 bytes

7 * message type, plus 2 bytes payload length, plus
* payload, plus padding

9 */
buffer = OPENSSL_malloc(1 + 2 + payload + padding);

11 bp = buffer;

13 /* Enter response type, length and copy payload */
*bp++ = TLS1_HB_RESPONSE;

15 s2n(payload, bp);
memcpy(bp, pl, payload);

17 // root cause taint labeling: taint the end of bp
// where the out of bounds read data goes

19 vm_taint_exploitation_label(bp + 17725, payload - 17725, 0);
bp += payload;

21 /* Random padding */
RAND_pseudo_bytes(bp, padding);

23

r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding);

Figure 5.4: Root Cause Taint Point for OpenSSL heap buffer overread bug in ssl/t1 lib.c
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This is the only example where more exploit sinks were generated from the root cause

as the taint source than the program input as the taint source. Both taint sources produced only

tainted read exploit sinks, and these detectors were only triggered in code related to the memcpy or

memmove functions.

Using exclusively the tainted read detector (D7) we found 28 unique locations in OpenSSL

that read the data derived from the root cause (see Table 5.2). Furthermore the detectors at these

locations report the TCN of the tainted bytes to be 0 which indicates that little computation is done

on these copied bytes. Therefore, we have no further indication that Heartbleed is exploitable as

remote code execution, but the detectors reveal other locations in the code that move around this

data. This could be useful to an analyst to figure out alternative ways to exfiltrate data from a read

disclosure. But for the purpose of this bug, these detectors do not reveal any new ways of exfiltrating

the data from the buffer overread.

5.2.6 SQLite

SQLite is an embedded SQL database engine that is used in a variety of applications [18].

The library is used in a variety of applications like Adobe’s Photoshop Lightroom product, the flight

software for Airbus, and the client side data store for Dropbox’s file archiving and synchronization

service.

When we run our program on the crashing input under Valgrind, we get the report that

there is a use-after-free at sqlite3.c:127739 in the function exprAnalyze. After manual

analysis using the method described in 5.2.2 we calculate how many times we hit the sqlite3MemFree

function before the program frees the target chunk. We assign taint labels to this chunk after the

tenth call to sqlite3MemFree in sqlite3.c:20510. Figure 5.5 shows the result of our

instrumentation in the sqlite3MemFree function.

2 static void sqlite3MemFree(void *pPrior){
. . .

4 sqlite3_int64 *p = (sqlite3_int64*)pPrior;
assert( pPrior!=0 );

6 p--;
SQLITE_FREE(p);

8 // root cause tainting after 10th free
vm_taint_exploitation_label(p, 776, 9);

10

}

Figure 5.5: Root Cause Taint Point for a use-after-free in sqlite3.c
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As expected, the tool detects the usage of tainted data at sqlite3.c:127739 with the

tainted read detector (D7). This is the only category of detectors that is triggered besides a read of

tainted malloc metadata (D4), but similar to the lesson learned in 5.2.2, we rule this out as a useful

exploit detector because the allocator is only reading valid pointers in the free list. We determined

that the use-after-free is of a field in the variable pTerm (of type struct *WhereTerm) called

prereqRight which is an 8 byte quantity of type SQLITE BITMASK TYPE. Given that pTerm

is used after it has been freed, a potential analyst may try to change control flow to provoke uses of

other fields in the pTerm, but the program trace reveals that this one location on line 127739 is the

last use of pTerm. In other words, there is no indirect control flow decision made as a result of any

of the fields in pTerm.

Root cause tainting leads to only five unique exploit sinks: two of them are related to

controlling the pTerm->prereqRight data and the other three are related to the reading of

freelist pointers. Conversely, tainting from the program input leads to 776 exploit detectors (see

Table 5.2).

5.2.7 Woff2

WOFF2 is a format for packaging and compressing font data, with one of the primary

goals being to access various fonts in Web documents through the CSS @font-face rules [20].

We are given a crashing input that triggers an n-byte heap buffer overwrite [13]. Figure

5.6 shows the code for reconstructing the glyf table, which is a table for “defining the appearance

of glyphs in font” [12]. Glyphs require specifications of the contours of the character and the

“instructions that grid-fit that glyph” [12]. On line 7, the program begins a loop over an array

of glyphs. On line 10, the program reads instruction size, but it does not perform any

checks on its value. On lines 17 and 22, glyph buf receives data from bbox stream and

composite stream respectively. Last, line 29 (which translates to line 500 in the actual source

code) contains the Read that triggers the heap buffer overflow, reading instruction size

number of bytes.

Figure 5.7 shows the location of the vulnerable memcpy along with the RTCP instru-

mentation. The bug is a buffer overwrite in the memcpy function (buffer.h:89) in the Buffer

class which is called from woff2 dec.cc:500 in the function woff2::ReconstructGlyf.

This test case is the only example in our corpus where the program crashes when it is not under

any memory instrumentation. There are 992,647 instructions executed between the root cause and
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1 bool ReconstructGlyf(const uint8_t* data, Table* glyf_table,
uint32_t* glyf_checksum, Table * loca_table,

3 uint32_t* loca_checksum, WOFF2FontInfo* info,
WOFF2Out* out) {

5 . . .
info->x_mins.resize(info->num_glyphs);

7 for (unsigned int i = 0; i < info->num_glyphs; ++i) {
. . .

9 if (have_instructions) {
if (PREDICT_FALSE(!Read255UShort(&glyph_stream, &instruction_size))) {

11 return FONT_COMPRESSION_FAILURE();
}

13 }

15 . . .
glyph_size = Store16(glyph_buf.get(), glyph_size, n_contours);

17 if (PREDICT_FALSE(!bbox_stream.Read(glyph_buf.get() + glyph_size, 8))) {
return FONT_COMPRESSION_FAILURE();

19 }
glyph_size += 8;

21

if (PREDICT_FALSE(!composite_stream.Read(glyph_buf.get() + glyph_size,
23 composite_size))) {

return FONT_COMPRESSION_FAILURE();
25 }

glyph_size += composite_size;
27 if (have_instructions) {

glyph_size = Store16(glyph_buf.get(), glyph_size, instruction_size);
29 if (PREDICT_FALSE(!instruction_stream.Read(glyph_buf.get() + glyph_size,

instruction_size))) {
31 return FONT_COMPRESSION_FAILURE();

}
33 glyph_size += instruction_size;

}
35 . . .

}
37 . . .

}

Figure 5.6: Demonstration of the buffer overread for the woff2 bug in woff2 dec.cc
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the malloc consistency check that eventually causes the program to abort. This is notable because

it provides plenty of distance between the root cause and the crash in order to aggregate a large

number of potential exploit sinks.

class Buffer {
2 public:

Buffer(const uint8_t *buffer, size_t len)
4 : buffer_(buffer),

length_(len),
6 offset_(0) { }

8 bool Skip(size_t n_bytes) {
return Read(NULL, n_bytes);

10 }

12 bool Read(uint8_t *buffer, size_t n_bytes) {
if (n_bytes > 1024 * 1024 * 1024) {

14 return FONT_COMPRESSION_FAILURE();
}

16 if ((offset_ + n_bytes > length_) ||
(offset_ > length_ - n_bytes)) {

18 return FONT_COMPRESSION_FAILURE();
}

20 if (buffer) {
std::memcpy(buffer, buffer_ + offset_, n_bytes);

22 // root cause taint labeling
vm_taint_exploitation_label(buffer + 0x3296, 10, 392);

24 }
offset_ += n_bytes;

26 return true;
}

Figure 5.7: Root Cause Taint instrumentation for woff2 in file woff2-buffer.h

Examining the exploit sinks for the root cause-based tainting, we see that 180 of our

276 detectors (non-unique) are a tainted read (D7) of the same stack address and triggered at

woff2 dec.cc:603, the following line:

*glyf checksum += ComputeULongSum(glyph buf.get(), glyph size);

where glyph buf is a std::unique ptr to the malloc chunk that gets overflown.

The tainted value is the value pointed to by glyf checksum which is a stack variable

from the woff2::ReconstructFont function which calls woff2::ReconstructGlyf.

It is obvious that when glyf checksum is tainted each time the code on line 603 is executed,

the TCN of the computed value continues to increase. A TCN as high as 53 is observed as a

result of this checksum operation. A learning point here is that the tainted read detector can give

superfluous information. Particularly, code to compute checksums propagates taint, but not in a

reversible way, so they are not typically useful for exploit development. However, TEASER handles

39



CHAPTER 5. RESULTS

these superfluous detectors by providing the TCN which can serve as an effective way to discount

some exploit detectors.

We observe 26 versus 4,430 unique exploit sinks when we use root cause-based taint

labeling instead of input taint labeling (see Table 5.2). Just like the other test cases, this smaller

number of exploit sinks allows an analyst to manually go through the exploit sinks in order to better

understand how to exploit the program.

5.3 Summary and Discussion of Results

We ran TEASER on six programs with known bugs. We were able to reaffirm the exploit

potential of the bugs in c-ares and OpenSSL. For c-ares, our results confirmed that a one byte over-

flow of a constant value (\x01) can affect the execution of the heap allocator (D4). For OpenSSL

we identified the location of our information disclosure by examining the callstack at one of our

tainted read detectors (D7).

The exploitability of the rest of our bugs was harder to determine. But, in each case, we

were usually able to distill the effect of the memory corruption to several lines in the source code.

We would not have been able to do this if we had tainted from the program input. Table 5.2 shows

the large difference in the number of exploit sinks for file input versus root cause taint for each

program (excluding OpenSSL).

5.3.1 Unexploitable Uses of Memory Corrupted Data

There are instances where a buffer overwrite can happen but conditions in the program,

particularly locations of the allocation of heap chunks, prevent the corruption of heap metadata or

adjacent allocated chunks. Consider Figure 5.8.

2 . . .
char *p;

4 p = malloc(40);
// get data clearly more than space allocated for p

6 fgets(p, 50, STDIN);
foo(p);

8 . . .

Figure 5.8: Demonstration of malloc overflow whose exploitability is shaped by the environment

Although this code above is clearly a heap buffer overwrite its exploitability depends on

the program code executed before and after it.
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Particularly, there are two heap layout conditions that the attacker should consider in order

to turn a heap bug into a reliable heap exploit:

1. Data - sizes and contents of heap chunks.

2. Control - the sequence of calls to malloc and free before and after the root cause

While it is not possible to have complete control over these two principles, they serve as a guide for

manipulating the heap environment. Figure 1.1, our motivating example, shows almost arbitrary

control over control and data, since an arbitrary sequence of mallocs and frees can be constructed.

Additionally, two types of objects, a string object and a printer object, can be created. On the other

hand, more ambiguous cases like Figure 5.8 do not clearly have the ability to shape the heap.

5.3.2 Simulating the Heap Environment and the Realism of the Fuzzing Target Har-
ness

All of our programs are each one target function that demonstrates usage of a library’s

API. We create a program that runs each of these target functions on input from a file representing

our crashing input. We call this our crash harness. The crash harness can be used to simulate a heap

environment before the target function is called in order to provoke a heap overflow to corrupt a

certain chunk.

Our test case with c-ares shows the importance of simulating the heap to reveal the ex-

ploitability of the heap bug. At first, our detectors were not catching any use of the one byte over-

flow. We determined that lack of detectors being triggered was due to no adjacent malloc chunks to

the chunk with the overflow.

We were able to utilize our crash harness to create a sequence of malloc and frees before

a call to our target function. This is useful, because we were able to guarantee that the result of

ares create query was allocated directly before an in-use chunk from our crash harness. The

detectors demonstrated that this chunk’s metadata was now under the control of the attacker through

this one byte overflow.
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Conclusion

We created a model for exploring the effects of a memory corruption on a program’s

execution for the purpose of assessing the exploitability of a bug. Our Root Cause Taint Model

allows us to label data from a memory corruption and we use seven Exploit Sink types to show how

the tainted data can be leveraged for an exploit. We implement this model in a tool called TEASER.

We tested our model and measurements on six real-world vulnerabilities from the Google Fuzz Test

corpus [10]. Our tool confirmed the exploitability of two of our six test cases. For the rest of the

cases, the tool demonstrated the lack of the exploitability of a program or possible exploit paths

given some change to the input.

6.1 Future Work

First, we will make TEASER more usable. We can automate the labeling of exploit

sources. Our approach for automating exploit source labeling would be to create a memory error

detector in PANDA that automatically taints bytes involved in memory corruptions. Another form

of usability would be to extend TEASER to work on stripped binaries. Finally, we will integrate the

results of TEASER with a popular disassembler.

Second, we will improve the testing and evaluation of TEASER. We will use a bigger data

set in order to quantitatively show that TEASER produces less exploit sinks than the alternative of

labeling the program input. We would also like to use TEASER on smaller programs (i.e., binaries

from Capture the Flag competitions) in order to demonstrate TEASER’s ability to aid in creating

remote code execution POCs.
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Appendix A

Motivating Example

#include <assert.h>

#define USAGE "./motivating-example <input>\n"
void exit_usage(int rc) {

5 printf(USAGE); exit(rc);
}
void exit_error(const char *error) {

printf("%s\n", error); exit(1);
}

10 #define DEBUG 1
void debug_printf(const char *fmt, ...)
{

if (DEBUG) {
va_list args;

15 va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);

}

20 }

typedef enum {
RAW_BYTES = 0x1eefbeef,
PRINTER = 0x13371337

25 } obj_type ;

typedef struct printer {
long id;
void (*read_disclosure)(long *);

30 long *data_ptr;
obj_type type;

} printer;

typedef struct chunk {
35 char *pointer;

size_t size;
} chunk;

// arbitrary read 8 bytes from pointer
40 // stored at data

void word_printer(long *data) {
printf("here is your word: %lx\n", *data);

}

45 long global_data = 1;
long printer_counter = 0;
chunk chunk_list[100];

50 int main_loop(FILE *fp) {
char tmp[16]; // 4 or 2 words
char *line = NULL; // 1 word
size_t linecap = 0; // 1 word
ssize_t linelen; // 1 word

55 int id1, id2, ret, i, offset; // 5 words or 2.5 words
ssize_t byte_stream_size; // 1 word
printer *printer_tmp; // 1 word

while ((linelen = getline(&line, &linecap, fp)) > 0) {
60 debug_printf("Line of len %zd\n", linelen);

if (linelen <= 1) {
debug_printf("Empty line. Skipping . . .\n");
continue;
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}
65 line[linelen-1] = ’\0’;

switch (line[0]) {
// create_printer_object -> id
case ’c’:

debug_printf("c [printer_object]\n");
70

for (i = 0; i < 100; i++) {
// chunk_list is initialized to 0 at the beginning of the
// program
if (chunk_list[i].pointer == NULL) {

75 printer_tmp = (printer *) malloc(sizeof(printer));
printer_tmp->id = printer_counter++;
printer_tmp->read_disclosure = word_printer;
printer_tmp->data_ptr = &global_data;
printer_tmp->type = PRINTER;

80 chunk_list[i].pointer = (char *) printer_tmp;
chunk_list[i].size = sizeof(printer);
debug_printf("id %d\n", i);
break;

}
85 }

break;
// create_raw_byte_array len raw_bytes -> id
case ’b’:

ret = sscanf(&line[1], " %zd %n", &byte_stream_size, &offset);
90 if (ret != 1) {

debug_printf("Unsuccessful parse of [create_raw_byte_array]\n");
continue;

}
if (byte_stream_size <= 0) {

95 debug_printf("byte_stream_size [%zd] is <=0\n", byte_stream_size);
continue;

}
if (byte_stream_size > (linelen - offset)) {

debug_printf("byte_stream_size [%zd] is <=0\n", byte_stream_size);
100 continue;

}

for (i = 0; i < 100; i++) {
if (chunk_list[i].pointer == NULL) {

105 chunk_list[i].pointer = (char *) malloc(byte_stream_size);
memcpy(chunk_list[i].pointer, &line[1+offset], byte_stream_size);
chunk_list[i].size = byte_stream_size;

debug_printf("b [byte_array] of {");
110 for (i = 0; i < byte_stream_size; i++) {

debug_printf("%02x ", line[1+offset+i]);
}
debug_printf("}\n");
debug_printf("id %d\n", i);

115 break;
}

}
break;

// release id
120 // VULN: leads to a UAF

case ’r’:
ret = sscanf(&line[1], "%d", &id1);
if (ret != 1) {

debug_printf("Unsuccessful parse of [release]\n");
125 continue;

}
if (id1 < 0 || id1 > 100) {

continue;
}

130 debug_printf("r [release %d]\n", id1);

if (chunk_list[id1].pointer != NULL) {
free(chunk_list[id1].pointer);

}
135 break;

// print id
case ’p’:

ret = sscanf(&line[1], "%d", &id1);
if (ret != 1) {

140 debug_printf("Unsuccessful parse of [print]\n");
continue;

}
if (id1 < 0 || id1 > 100) {

continue;
145 }

debug_printf("p [print %d]\n", id1);

if (chunk_list[id1].pointer != NULL) {
printer_tmp = (printer *) chunk_list[id1].pointer;

150 if (chunk_list[id1].size >= sizeof(printer)) {
if (printer_tmp->type == PRINTER) {

printer_tmp->read_disclosure(printer_tmp->data_ptr);
}

}
155 }

break;
// move dst_id src_id
// VULN: leads to a heap buffer overflow
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case ’m’:
160 ret = sscanf(&line[1], "%d %d", &id1, &id2);

if (ret != 2) {
debug_printf("Unsuccessful parse of [move]\n");
continue;

}
165 if (id1 < 0 || id1 > 100 || id2 < 0 || id2 > 100) {

continue;
}
debug_printf("m [move %d %d]\n", id1, id2);

170 memcpy(chunk_list[id1].pointer, chunk_list[id2].pointer, chunk_list[id2].size);
break;

default:
debug_printf("default case\n");

}
175 }

return 0;
}

int main(int argc, char *argv[]) {
180 char *fname;

if (argc == 1) {
/*fname = (char *) "tmp";*/
exit_usage(0);

} else if (argc == 2) {
185 fname = argv[1];

} else {
exit_usage(0);

}
FILE *fp = fopen(fname, "rb");

190 if (fp == NULL)
exit_usage(1);

return main_loop(fp);
}
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